Estimation of the ROC Curve under Verification Bias
نویسندگان
چکیده
منابع مشابه
Bayesian ROC curve estimation under verification bias.
Receiver operating characteristic (ROC) curve has been widely used in medical science for its ability to measure the accuracy of diagnostic tests under the gold standard. However, in a complicated medical practice, a gold standard test can be invasive, expensive, and its result may not always be available for all the subjects under study. Thus, a gold standard test is implemented only when it i...
متن کاملSemiparametric estimation of the covariate-specific ROC curve in presence of ignorable verification bias.
Covariate-specific receiver operating characteristic (ROC) curves are often used to evaluate the classification accuracy of a medical diagnostic test or a biomarker, when the accuracy of the test is associated with certain covariates. In many large-scale screening tests, the gold standard is subject to missingness due to high cost or harmfulness to the patient. In this article, we propose a sem...
متن کاملEstimation of the area under the ROC curve.
The area under the receiver operating characteristic curve is frequently used as a measure for the effectiveness of diagnostic markers. In this paper we discuss and compare estimation procedures for this area. These are based on (i) the Mann-Whitney statistic; (ii) kernel smoothing; (iii) normal assumptions; (iv) empirical transformations to normality. These are compared in terms of bias and ro...
متن کاملRisk Estimation by Maximizing the Area under ROC Curve
Risks exist in many different domains; medical diagnoses, financial markets, fraud detection and insurance policies are some examples. Various risk measures and risk estimation systems have hitherto been proposed and this paper suggests a new risk estimation method. Risk estimation by maximizing the area under a receiver operating characteristics (ROC) curve (REMARC) defines risk estimation as ...
متن کاملBayesian ROC curve estimation under binormality using a rank likelihood
There are various methods to estimate the parameters in the binormal model for the ROC curve. In this paper, we propose a conceptually simple and computationally feasible Bayesian estimation method using a rank-based likelihood. Posterior consistency is also established. We compare the new method with other estimation methods and conclude that our estimator generally performs better than its co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrical Journal
سال: 2009
ISSN: 0323-3847,1521-4036
DOI: 10.1002/bimj.200800128